BIM Process Risks for MEP Design Service and How to Mitigate Them


Global construction practice has seen substantial changes over recent years, with the arrival of BIM being a key factor. Building Information Modelling, known as BIM, is a process that involves the creation of 3D models, which enables designers and engineers to create accurate construction scheduling, estimate costs and adapt intelligently to design changes. Accurate building information models and precise building designs are created from the outset, which benefits all stakeholders in the construction process, particularly MEP (mechanical, electrical and plumbing) designers. MEP (M&E) designers or engineers design MEP services, while MEP contractors are then responsible for spatial coordination, detailed design, fabrication and installation. Though BIM drives an effective process for MEP (M&E) design services, there are some risks involved. We look at how these risks can be mitigated.

Firstly, it is useful to understand exactly what the BIM process contributes to MEP engineering design. A BIM model helps visualise spatial MEP requirements. Detailed views are created for analysis, affordable packaging designer and any clashes of spatial requirements are identified and can be resolved at an early stage. Designs can be altered to mitigate any clashes, and these changes can be seen in the model.

The progress of the MEP design and coordination workflow process has been supported and driven by technological advancements. BIM technology has played an important role in making this possible, especially the use of 3D models through Autodesk’s BIM 360 tool. BIM 360 is a cloud-based software platform developed primarily for construction, which employs checklists, equipment tracking and the monitoring of tasks to improve quality and on-site safety. Within BIM 360, models can be utilised for 2D construction documentation and the 3D coordination of trades. BIM 360 permits the control of processes by project managers, subcontractors, designers and architects at all design stages. It enables the sharing of vast amounts of information between stakeholders and easy communication.

MEP designers can utilise architectural, structural and trade models to plan in detail from the onset of a project by designing in 3D. In general, the process involves MEP design and installation workflows that will streamline planning, designing, coordination, fabrication, installation and construction of a project. Following architectural design, the MEP design engineer develops building services design elements, such as lighting, cooling, heating, drainage, waste, fire prevention and protection services. In most cases, the design engineer is not involved with the detailed spatial design of building services. Usually, it is the MEP, or trade, contractor who carries out the detailed spatial design and installation. It falls to the MEP contractor to convert the consultant’s design into an installation-ready MEP format and provide MEP shop drawing services. At times, fabricators creating ductwork or pipework elements, electrical ladders or sprinklers in a module also contribute.

The BIM process brings all stakeholders on to the same platform at every design stage.

Therefore, an effective collaboration tool would be required to:

 

  • Enable access to MEP designers, architects, structural designers, MEP contractors
  • Host various formats for files and documents
  • Ease communication
  • Permit designers and shareholders to work on the same models and share design data

 

BIM 360 Team with Collaboration for Revit (C4R) offers this. It integrates stakeholders and project information into a single cloud-based platform and improves quality while reducing rework. Checklists can monitor safety on site, equipment can be tracked and asset data can be collated. Any problems can be resolved early in the design process, minimising delay, cost and rework.

 


Leave a Reply

Your email address will not be published.